
Visual Computing Systems
Stanford CS348K, Spring 2025

Lecture 15:

Video Compression +
Basic Video Conferencing Systems

Stanford CS348K, Spring 2025

Some broader questions for today

Compression is a form of understanding: interesting video content analyses performed to
make modern video compression schemes work

Manually crafted compression schemes vs. learned compression schemes
- What about content/task-specific compression schemes

Viewing decoding a video as a “form” of rendering
- What does it mean to “capture” and transmit someone’s likeness?

Stanford CS348K, Spring 2025

Ubiquitous video

Stanford CS348K, Spring 2025

Estimate: 82% of internet traffic will be video

Stanford CS348K, Spring 2025

Basically, we’re watching TV and movies…

Stanford CS348K, Spring 2025

Stanford CS348K, Spring 2025

20 second video: 1920 x 1080, @ 30fps
After decode: 8-bits per channel RGB → 24 bits/pixel → 6.2 MB/frame
(6.2 MB/frame x 20 sec x 30 fps = 3.5 GB)
Size of data when each frames stored as JPG: 404 MB
Video file size when compressed using H.264: 26.6 MB (133-to-1 compression ratio compared to uncompressed, 8-to-1 compared to JPG)

Stanford CS348K, Spring 2025

H.264 Video Compression

Stanford CS348K, Spring 2025

H.264/AVC video compression
AVC = advanced video coding

Also called MPEG4 Part 10

Common format in many modern HD video applications:
- HD streaming video on internet

- HD video recorded by your smart phone

- European broadcast HDTV (U.S. broadcast HDTV uses MPEG 2)

- Some satellite TV broadcasts (e.g., DirecTV)

Stanford CS348K, Spring 2025

Hardware implementations
Support for H.264 video encode/decode is provided by fixed-function hardware on most
modern processors

Modern operating systems expose hardware encode decode support through hardware-
accelerated APIs
- e.g., DirectShow/DirectX (Windows), AVFoundation (iOS)

Stanford CS348K, Spring 2025

Terminology: video container format versus video codec
Video container (MOV, AVI) bundles media assets

Video codec: H.264/AVC (MPEG 4 Part 10)
- H.264 standard defines how to represent and decode video
- H.264 does not define how to encode video (this is left up to implementations)

Stanford CS348K, Spring 2025

Video compression: main ideas
Compression is about exploiting redundancy in a signal

- Intra-frame redundancy: value of pixels in neighboring regions of a frame are good
predictor of values for other pixels in the frame (spatial redundancy)

- Inter-frame redundancy: pixels from nearby frames in time are a good predictor for the
current frame’s pixels (temporal redundancy)

Stanford CS348K, Spring 2025

Residual: difference between compressed image and original image

Original pixels

Compressed pixels
(JPEG quality level 2)

Residual
(amplified for visualization)

Compressed pixels
(JPEG quality level 6)

Residual
(amplified for visualization)

In video compression schemes, the residual
image is compressed using lossy compression
techniques. Better predictions lead to
smaller and more compressible residuals!

Stanford CS348K, Spring 2025

H.264/AVC video compression overview

Intra-/Inter-frame
Prediction Model

Transform/
Quantize
Residual

Previously
Coded Data

Entropy
Encoding

Source
Video

Compressed
Video Stream

Prediction
parameters

Residual
Basis

coefficients

Credit: Figure derived from H.264 Advanced Video Compression Standard, I. Richardson, 2010

Residual: difference between predicted pixel values and input video pixel values

In other words: The main idea today: use an algorithm to predict what a future pixel should be, then store a description of the
algorithm and the residual of the prediction.

Stanford CS348K, Spring 2025

16 x 16 macroblocks
Video frame is partitioned into 16 x 16 pixel
macroblocks

Due to 4:2:0 chroma subsampling, macroblocks
correspond to 16 x 16 luma samples and 8 x 8
chroma samples

Stanford CS348K, Spring 2025

Macroblocks in an image are organized into slices
Figure to left shows the macroblocks in a frame
(boxes are macroblocks not pixels)

Macroblocks are grouped into “slices”

Can think of a slice as a sequence of macroblocks in raster
scan order *

Slices can be decoded independently **
(Facilitates parallel decode + robustness to transmission
failure)

Slice 1

Slice 2

* H.264 also has non-raster-scan order modes (FMO), will not discuss today.

** Final “deblocking” pass is often applied to post-decode pixel data, so technically slices are not fully independent.

One 16x16 macroblock

Stanford CS348K, Spring 2025

Decoding via prediction + correction
During decode, samples in a macroblock are generated by:
1. Making a prediction based on already decoded samples in macroblocks from the same frame (intra-frame

prediction) or from other frames (inter-frame prediction)
2. Correcting the prediction with a residual stored in the video stream

Three forms of prediction:
- I-macroblock: (“intra-picture predictive only”) macroblock samples predicted from samples in previous macroblocks

in the same slice of the current frame

- P-macroblock: (“predictive”) macroblock pixel samples can be predicted from samples from one other frame (one
prediction per macroblock)

- B-macroblock: (“bipredictive”) macroblock pixel samples can be predicted by a weighted combination of multiple
predictions from samples from other frames

Stanford CS348K, Spring 2025

Intra-frame prediction (I-macroblock)
Prediction of sample values is performed in spatial domain, not transform domain

- Predict pixel values, not basis coefficients

Modes for predicting the 16x16 luma (Y) values: *
- Intra_4x4 mode: predict 4x4 block of samples from adjacent row/col of pixels

- Intra_16x16 mode: predict entire 16x16 block of pixels from adjacent row/col

- I_PCM: actual sample values provided

0 1 2 3 4 5 6 7 8
9
10
11
12

Intra_4X4

Intra_16x16

Yellow pixels: already reconstructed (values known)
White pixels: 4x4 block to be reconstructed

* An additional 8x8 mode exists in the H.264 High Profile

Stanford CS348K, Spring 2025

Intra_4x4 prediction modes
Nine prediction modes (6 shown below)
- Other modes: horiz-down, vertical-left, horiz-up

0 1 2 3 4
9
10
11
12

0 1 2 3 4
9
10
11
12

0 1 2 3 4
9
10
11
12

0 1 2 3 4 5 6 7 8
9
10
11
12

Mode 0: vertical
(4x4 block is copy of
above row of pixels)

Mode 1: horizontal
(4x4 block is copy of left

col of pixels)

Mode 2: DC
(4x4 block is average of above

row and left col of pixels)

Average

Mode 3: diagonal down-left (45o)

0 1 2 3 4
9
10
11
12

Mode 4: diagonal down-right (45o)

0 1 2 3 4
9
10
11
12

Mode 5: vertical-right (26.6o)

Stanford CS348K, Spring 2025

Intra_4x4 prediction modes (another look)

https://hacks.mozilla.org/2018/06/av1-next-generation-video-the-constrained-directional-enhancement-filter/

Stanford CS348K, Spring 2025

Intra_16x16 prediction modes
4 prediction modes: vertical, horizontal, DC, plane

Average

Mode 0: vertical Mode 1: horizontal Mode 2: DC

Mode 4: plane

P[i,j] = Ai * Bj + C
A derived from top row, B derived from left col, C from both

Stanford CS348K, Spring 2025

Further details
Intra-prediction of chroma (8x8 block) is performed using four modes similar to those of intra_16x16 (except they are
reordered as: DC, vertical, horizontal, plane)

Intra-prediction scheme for each 4x4 block within macroblock encoded as follows:

- One bit per 4x4 block:

- if 1, use most probable mode

- Most probable = lower of modes used for 4x4 block to left or above current block

- if 0, use additional 3-bit value rem_intra4x4_pred_mode to encode one of nine modes

mode=??mode=2

mode=8

- if intra4x4_pred_mode is smaller than most probable mode,
then actual mode is given by intra4x4_pred_mode

- else, actual mode is intra4x4_pred_mode + 1

Each mode is a different prediction algorithm, so we have to store which
algorithm we chose in the video stream in order to decode it.

Stanford CS348K, Spring 2025

Inter-frame prediction (P-macroblock)
Predict sample values using values from a block of a previously decoded frame *

Basic idea: pixels in current frame are given by some translation of pixels from temporally nearby frames
(e.g., consider an object that moved slightly on screen between frames)
- “Motion compensation”: use of spatial displacement to make prediction about pixel values

Recently decoded frames
(stored in “decoded picture buffer”)

macroblock

Frame currently
being decoded

* Note: “previously decoded” does not imply source frame must come before current frame in the video sequence.
 (H.264 supports decoding out of order.)

Stanford CS348K, Spring 2025

P-macroblock prediction

Decoded picture
buffer: frame 0

Decoded picture
buffer: frame 1

Current frame

A

B

Block A: predicted from (frame 0, motion-vector = [-3, -1])
Block B: predicted from (frame 1, motion-vector = [-2.5, -0.5])

Prediction can be performed at macroblock or sub-macroblock granularity
- Macroblock can be divided into 16x16, 8x16, 16x8, 8x8 “partitions”

- 8x8 partitions can be further subdivided into 4x8, 8x4, 4x4 sub-macroblock partitions

Each partition predicted by sample values defined by:
(reference frame id, motion vector)

4x4 pixel sub-
macroblock

partition

Note: non-integer motion vector

Stanford CS348K, Spring 2025

Motion vector visualization

Image credit: Keyi Zhang

Stanford CS348K, Spring 2025

Non-integer motion vectors require resampling

H.264 supports both 1/2 pixel and 1/4 pixel resolution motion vectors
1/4 resolution resampling performed by bilinear interpolation of 1/2 pixel samples
1/8 resolution (chroma only) by bilinear interpolation of 1/4 pixel samples

A

B

C

D

E

F

Example: motion vector with 1/2 pixel values.
Must resample reference block at positions given by red dots.

Interpolation to 1/2 pixel sample points via 6-tap filter:
half_integer_value = clamp((A - 5B + 20C + 20D - 5E + F) / 32)

Stanford CS348K, Spring 2025

Motion vector prediction
Problem: per-partition motion vectors require significant amount of storage
Solution: predict motion vectors from neighboring partitions and encode residual in compressed video stream
- Example below: predict block D’s motion vector as average of motion vectors from block A, B, C

- Prediction logic becomes more complex when partitions of neighboring blocks are of different size

DA

B C

Stanford CS348K, Spring 2025

Question: what partition size is best?
Smaller partitions likely yield more accurate prediction
- Fewer bits needed for residuals

Smaller partitions require more bits to store partition information (diminish benefits of
prediction)
- Must store:

- Source picture id
- Motion vectors (note that motion vectors are more “coherent” in adjacent blocks with finer sampling,

so they likely compress well)

Stanford CS348K, Spring 2025

Inter-frame prediction (B-macroblock)
Each partition predicted by up to two source blocks
- Prediction is the average of the two reference blocks

- Each B-macroblock partition stores two frame references and two motion vectors (recall P-macroblock partitions
only stored one)

Previously decoded frames
(stored in “decoded picture Buffer”)

Frame currently
being decoded

A

B

prediction = (A + B) / 2

Stanford CS348K, Spring 2025

Additional prediction details
Optional weighting to prediction:
- Per-slice explicit weighting (reference samples multiplied by weight)
- Per-B-slice implicit weights (reference samples weights by temporal distance of reference frame from

current frame in video)
- Idea: weight samples from reference frames nearby in time more

Stanford CS348K, Spring 2025

Post-process filtering
Deblocking
- Blocking artifacts may result as a result of

macroblock granularity encoding
- After macroblock decoding is complete,

optionally perform smoothing filter across
block edges.

[Image credit: Averbuch et al. 2005]

Stanford CS348K, Spring 2025

Putting it all together:
encoding an inter-predicted macroblock

Inputs:
- Current state of decoded picture buffer (state of the video decoder)
- 16x16 block of input video that the encoder needs to encode

General steps: (need not be performed in this order)
- Resample images in decoded picture buffer to obtain 1/2, and 1/4, 1/8 pixel resampling
- Choose prediction type (P-type or B-type)
- Choose reference pictures for prediction
- Choose motion vectors for each partition (or sub-partition) of macroblock
- Predict motion vectors and compute motion vector difference
- Encode choice of prediction type, reference pictures, and motion vector differences
- Encode residual for macroblock prediction
- Store reconstructed macroblock (post deblocking) in decoded picture buffer to use as reference picture for future

macroblocks

Coupled
decisions

Stanford CS348K, Spring 2025

H.264/AVC video encoding

Credit: Figure derived from H.264 Advanced Video Compression Standard, I. Richardson, 2010

Intra-frame
Prediction

Transform/
Quantize
Residual

Decoded picture
buffer

Source
Video
Frame

Compressed
Video Stream

Prediction parameters

Actual MB pixels
Basis

coefficients

Inter-frame
Prediction

Predicted MB
Compute
Residual

Entropy
Encoder

Motion Vector
Pred.

Compute
MV Diffs

Inverse
transform/

quantize
Deblock

Motion
vectors

MB = macroblock
MV = motion vector

Stanford CS348K, Spring 2025

Motion estimation algorithms
Encoder must find reference block that predicts current frame’s pixels well.

- Can search over multiple pictures in decoded picture buffer + motion vectors can be non-integer (huge
search space)

- Must also choose block size (macroblock partition size)
- And whether to predict using combination of two blocks
- Literature is full of heuristics to accelerate this process

- Remember, must execute motion estimation in real-time for HD video (1920x1080) on a low-power
smartphone

A

gray area:
search region Decoded picture

buffer: frame 0
Current frame

Limit search window:

Coarser search:
- Limit search window to small region
- First compute block differences at coarse scale (save partial sums from previous searches)

Smarter search:
- Guess motion vectors similar to motion vectors used for neighboring blocks
- Diamond search: start by test large diamond pattern centered around block

- If best match is interior, refine to finer scale
- Else, recenter around best match

Early termination: don’t find optimal reference patch, just find one that’s “good enough”: e.g., compressed
representation is lower than threshold

- Test zero-motion vector first (optimize for non-moving background)
Optimizations for subpixel motion vectors:

- Refinement: find best reference block given only pixel offsets, then try 1/2, 1/4-subpixel offsets around this match
Stanford CS348K, Spring 2025

Motion estimation algorithm optimizations

Original Refined Recentered

Stanford CS348K, Spring 2025

H.265 (HVEC)
Standard ratified in 2013
Goal: ~2x better compression than H.264
Main ideas: (more options, but similar in spirit to what we’ve discussed so far)
- Macroblock sizes up to 64x64
- Prediction block size and residual block sizes can be different
- 35 intra-frame prediction modes (recall H.264 had 9)
- …

Stanford CS348K, Spring 2025

AV1
Main appeal may not be technical: royalty free codec, but many new options for encoders

AV1 Superblock Partitionings 56 angles for intraframe block prediction!
(recall H.264 had nine!)

Global transforms to geometrically warp previous
frames to new frames

Prediction of chroma channels from luma

Synthetic generation of film-grain texture so that high-
frequency film grain does not need to be compressed…

Stanford CS348K, Spring 2025

Example: searching for best intra angles

https://www.slideshare.net/luctrudeau/i-dont-care-if-you-have-360-intra-directional-predictors

Compute image gradients in block
Bin gradients to find most likely to be useful angles.
Only try the most likely angles.

Stanford CS348K, Spring 2025

High cost of software encoders
Statistic from Google:
- About 8-10 CPU minutes to compress 150 frames of 2160p H.264 video (4K video)
- About 1 CPU hour for more expensive VP9 codec

[Ranganathan 2021]

Stanford CS348K, Spring 2025

Coarse-grained parallel video encoding
Parallelized across segments (I-frame inserted at start of segment)
Concatenate independently encoded bitstreams

Task 1
(encode 0-2 min)

Task 2
(encode 2-4 min)

Task 3
(encode 4-6 min)

Task 4
(encode 6-8 min)

Task 5
concat

Smaller segments = more potential parallelism, worse video compression

Example: encoding an eight minute video

Stanford CS348K, Spring 2025

Three types of encoding from Meta
Messenger Facebook Live /

Messenger Live Video
Facebook / Instagram Posts

Consider different tradeoffs: compression quality vs. latency in each of these cases

Stanford CS348K, Spring 2025

Fraction of energy consumed by different parts of instruction pipeline
(H.264 video encoding)

acc = 0;
acc = AddShft(acc, x0, x1
acc = AddShft(acc, x

, 20);
-1, x2

acc = AddShft(acc, x
, -5);

-2, x3
xn = Sat(acc);

, 1);

Figure 5. FME upsampling after fusion of two multiplications and two
additions. AddShft takes two inputs, multiplies both with the
multiplicand and adds the result. Multiplication is performed using
shifts and adds. Operation fusion results in 3 instructions instead of
the RISC’s 5 add/sub and 4 multiplication instructions.

Table 5. Fused operations added to each unit and the resulting
performance and energy gains. FME required fusion of large
subgraphs to get significant performance improvement.

of

fused
ops

Op
Depth

Energy
Gain

Perf
Gain

IME 4 3-5 1.5 1.6
FME 2 18-34 1.9 2.4
Intra 8 3-7 1.9 2.1

CABAC 5 3-7 1.1 1.1

Table 5 presents the number of fused operations created for each
H.264 algorithm, the average size of the fused instruction
subgraphs, and the total energy and performance gain achieved
through fusion. Interestingly, IME and FME do not share any
instructions, though Intra and FME share instructions for the
Hadamard transform. DCT transform also implements the same

transform instructions. CABAC’s fused operations provide
negligible performance and energy gains of 1.1x. Fused
instructions give the largest advantage for FME, on average
doubling the energy/performance advantage of SIMD/VLIW.
Employing fused operations in combination with SIMD/VLIW
results in an overall performance improvement of 15x for the
H.264 encoder, and an energy efficiency gain of almost 10x, but
still uses greater than 50x more energy than an ASIC.
The basic problem is clear. For H.264, the basic operations are
very simple and low energy. In our base machine we over-
estimate the energy consumed by the functional units, since we
count the entire 32–wide functional unit energy. When we move
to the SIMD machine, we tailor the functional unit to the desired
width, which reduces the required energy. However, executing
10s of narrow width operations per instruction still leaves a
machine that is spending 90% of its energy on overhead functions,
with only 10% going to the functional units.

4.3 Algorithm Specific Instructions
To bridge the remaining gap, we must create instructions that can
execute 100s of operations in a single instruction. To achieve this
parallelism requires creating instructions that are tightly
connected to custom data storage elements with algorithm-
specific communication links to supply the large amounts of data
required, and thus tend to be very closely tied to the specific
algorithmic methods being optimized. These storage elements can
then be directly wired to custom designed multiple input and
possibly multiple output functional units, directly implementing
the required communication for the function in hardware.

Once this hardware is in place, the machine can issue “magic”
instructions that can accomplish large amounts of computation at
very low costs. This type of structure eliminates almost all the

Figure 4. Datapath energy breakdown for H.264. IF is instruction fetch/decode (including the I-cache). D-$ is the D-cache. Pip is the
pipeline registers, busses, and clocking. Ctl is random control. RF is the register file. FU is the functional elements. Only the top bar
(FU), or perhaps the top two (FU + RF) contribute useful work in the processor. For this application it is hard to achieve much more
than 10% of the power in the FU without adding custom hardware units. This data was estimated from processor simulations.

42

FU = functional units
RF = register fetch

Ctrl = misc pipeline control
Pip = pipeline registers (interstage) IF = instruction fetch + instruction cache

D-$ = data cache

integer motion estimation fractional (subpixel)
motion estimation

intraframe prediction,
DTC, quantization

arithmetic encoding

no SIMD/VLIW vs. SIMD/VLIW

[Hameed et al. ISCA 2010]

56% of total time 36% of total time 7% of total time 1% of total time (of baseline CPU imp)

Stanford CS348K, Spring 2025

ASIC acceleration of video encode/decode

Stanford CS348K, Spring 2025

NVIDIA GPUs have video encode/decode ASICs
Example: GeForce NOW game streaming service
Rendered images compressed by GPU and directly streamed over network to remote player

▪ Another example: consumers at home streaming to Twitch
- Do not want compression to take processing capability away from running the game itself.

Stanford CS348K, Spring 2025

Why do you think Google’s video sharing services
(Youtube, Google photos, etc.) are willing to pay a high
compute cost for compression?

Reminder: statistic from Google:
- About 8-10 CPU minutes to compress 150 frames

of 2160p H.264 video (4K video)
- About 1 CPU hour for more expensive VP9 codec

[Ranganathan 2021]

Stanford CS348K, Spring 2025

When you upload a video it gets processed into many
different output videos for serving

Different resolutions:
- For different viewing device types
- For different network conditions

Different formats:
- Different devices might have video decode

hardware that supports different formats
(older devices might only support H.264,
newer devices H.265, AV1 etc)

Note: it makes sense to amortize data loading (from
storage) and data decoding costs over many output
resolutions/formats

Stanford CS348K, Spring 2025

Google’s Video (Trans)coding Unit (VCU)
ASIC hardware for decoding/encoding video in Google datacenter for Youtube/Youtube Live/etc.
Consider load:
- 500 hours of video uploaded to Youtube per minute (2019)
- Must generate encoded versions assets at many resolutions and using different codecs to support streaming to

consumers with many different devices and networks

[Ranganathan 2021]

Stanford CS348K, Spring 2025

Machine Learned Compression Schemes

Stanford CS348K, Spring 2025

Learned compression schemes
H.264/265/AV1 video compression are “lossy” compression techniques that discard information is
that is present in the visual signal, but less likely to be noticed by the human eye
- Key principle: “Lossy, but still looks good enough to humans!”

Compression schemes described in this lecture so far involve manual choice / engineering of good
representations (features)

But machine learning is all about learning good representations from data.
- Interest in learning highly compressed representations for a specific class of images/videos, or for

a specific task to perform on images/videos

Stanford CS348K, Spring 2025

DNN autoencoder

“Encoder” “Decoder”

If this latent representation is compact, then it is a
compressed representation of the input image

https://medium.com/@birla.deepak26/autoencoders-series-daad78df9350

Stanford CS348K, Spring 2025

Learned compression schemes
Many recent DNN-based approaches to compressing video learn to compress the residual

Figure 1: Overview of our proposed video streaming pipeline. It consists of two modules: a conventional H.264 module and our
proposed residual autoencoder. The input to our residual module is the difference between the original and compressed videos.
The difference is encoded and binarized to generate binary representations. We utilize Huffman coding to further compress the
binary representations into a bit stream in a lossless manner. On the client side, we reconstruct the output video by adding back
the decoded difference to the compressed video.

only can we improve the output quality by spending a small
amount of effort, but also the system can adapt to existing
compression platforms and train for specific domains by ex-
ploiting large-scale data. Note that, although we use H.264
in our pipeline, other video compression standards such as
MPEG4 and HEVC can be used as well.

Given an input video X, we obtain the compressed video
Y by applying H.264. The difference between the two
videos is called the residual information R = X �Y. The
larger the residual information, the poorer the compressed
video quality. We also note that R is not included in Y be-
cause it consists of highly non-linear patterns, which can not
be compressed effectively with conventional approaches.

We argue that by limiting the video domain, we could
leverage a novel autoencoder to effectively compress the
residual information. The autoencoder consists of a pair of
functions (E ,D), where the encoder E maps R to a binary
map and the decoder D recovers R from the binary map
on the client side. The recovered residual information is re-
ferred to as R̂ and the final output video Y+ R̂ has a better
visual quality than Y. We note that the binary map is further
mapped to a bit stream by using the Huffman coding algo-
rithm (Cover and Thomas 2006), which is asymptotically
optimal, to reduce its bandwidth usage.

Sending the bit stream of the residual information requires
additional bandwidth. However, we can train an autoencoder
that only requires a much smaller bandwidth to compress
the residual information than H.264. Therefore, we can run
the H.264 standard in a higher compression rate, which uses
a smaller bandwidth but results in a larger residual signal.
We then apply our autoencoder to compress the residual sig-
nal into a small bit stream. Considering a scenario where
the bandwidth for a video stream is 5Mbps, we can apply
the proposed pipeline to compress the video in 4Mbps us-
ing H.264 and utilize the remaining 1Mbps for sending the
residual signal. Because our autoencoder is more efficient

than H.264 in compressing the residual signal, our system
achieve better performance than a baseline system that allo-
cates all the 5Mbps for H.264.

One may wonder why not completely replacing the H.264
standard with the proposed residual autoencoder. We argue
that our residual autoencoder is only more efficient than
H.264 in compressing the residual signal. The carefully-
engineered H.264 is more efficient in compressing the core
video. By marrying the strength of H.264 and the proposed
autoencoder, our hybrid system achieves better performance.
Moreover, our pipeline can be easily integrated into the ex-
isting H.264 standard since the residual information can
be attached in the meta field of a H.264 streaming packet.
Hence we can enjoy the popularity of the H.264 standard
and various hardware accelerators implemented for H.264.

We note that in the proposed domain-specific video
streaming pipeline, one needs to send the parameters of D
and the Huffman decoder table to the client for the stream-
ing service, which requires an additional bandwidth. How-
ever, the parameters can be sent before the streaming starts.
Once the parameters are sent, the user can enjoy the low la-
tency and high video quality features of the proposed video
streaming pipeline.

Binary Residual Autoencoder

We design an autoencoder that consists of three components:
encoder E , binarizer B (introduced in the next section) and
decoder D. For the encoder, the goal is to learn to extract
compact feature representations for the following binarizer.
We use L convolutional layers in our encoder, in which each
layer has the same channel number C and a stride of two
that down-samples feature maps. The binarizer converts the
output from the last convolutional layer into a binary map.
For the decoder, we aim to up-sample the binary map back to
the original input. Our decoder has L convolutional layers.
At the end of each convolutional layer, a sub-pixel layer (Shi

[Tsai et al. 2018]

Use standard video compression at low quality, then use an autoencoder to compress the residual.
(Learn to compress the residual)

Stanford CS348K, Spring 2025

Super-resolution-based reconstruction
Single image superresolution task: given a low-resolution image, predict the
corresponding high-resolution image

[SRGAN, Ledig et al. CVPR 2017]

Stanford CS348K, Spring 2025

Super resolution-based reconstruction
Encode low-resolution video using standard video compression techniques
Also transfer (as part of the video stream) a video-specific super-resolution DNN to upsample the low
resolution video to high res video.
- Assumption: training costs are amortized over many video downloads

[Yeo et al. OSDI 2018]

Stanford CS348K, Spring 2025

Neural volumes
Learn to encode multiple views of a person into a latent code (z) that is decoded into a volume than can be
rendered with conventional graphics techniques from any viewpoint

▪ Motivated by VR applications

Stanford CS348K, Spring 2025

Person-specific video compression

[Chan et al. 2019]

Output: video of graduate student performing the same motion

Input: video of professional ballerina performing a motion

Input video
Frame

2D
Pose

Pose Detector
DNN

Pose-2-image
DNN

Output video
frame

Encode video as just a
set of 14 pose joints.

Stanford CS348K, Spring 2025

NVIDIA Maxine
GPU-accelerated video processing for video conferencing applications

Examples: avatar control, video superresolution, advanced background segmentation

Stanford CS348K, Spring 2025

Zoom avatars / Snapcam lenses

Where is the line between transmission of what happened and “making something up”?

Stanford CS348K, Spring 2025

The best camera is
the one that’s off?

Stanford CS348K, Spring 2025

Synthesizing reactions?
Input: audio of speaker
Output: video of listener’s reaction

Stanford CS348K, Spring 2025

User-triggered effects (examples: audio clips, “reactions”)

Stanford CS348K, Spring 2025[Lawrence et al. 2021]

Project Starline: pursuit of high fidelity

Stanford CS348K, Spring 2025

Summary
H.264/265/AV1 video compression are “lossy” compression techniques that discard information is that is
present in the visual signal, but less likely to be noticed by the human eye
- Key principle: “Lossy, but still looks good enough to humans!”

Key idea of video encoding is “searching” for a compact encoding of the visual signal in a large space of
possibilities
- Video encoder ASIC used to accelerate this search

Growing interest in learning these encodings, but it remains hard to beat well-engineered features
- But promising if learned features are specialized to video stream contents
- Or to specific tasks (remember, increasing amount of video is not meant to be consumed by human eyes)

Stanford CS348K, Spring 2025

Videoconferencing systems
(Only if time)

Stanford CS348K, Spring 2025

As you can imagine, a lot of interest in video conferencing

Stanford CS348K, Spring 2025

Let’s design a video conferencing system
We want to deliver a visually rich experience similar to features of modern platforms

Stanford CS348K, Spring 2025

Deliver to wide range of clients and network settings

Stanford CS348K, Spring 2025

Let’s design a video conferencing system
Large gallery views: companies raced to provide 7x7 gallery in 2020 *

* it was quickly determined this was not particularly great feature

Stanford CS348K, Spring 2025

Setup…

Cloud

West Coast
Servers

East Coast
Servers

Icon credits: person by mim studio from the Noun Project, avatar by Soremba from the Noun Project

Personal
computer

Consider issues like latency…

Personal
computer

Stanford CS348K, Spring 2025

Q. Should we transcode/process video on our cloud servers?
What are advantages (to users? To the service provider)?
What are disadvantages?

Stanford CS348K, Spring 2025

Implementing gallery view

…

Cloud routes compressed
video bitstreams to users

(Does not manipulate bits)

Receiving client “renders” all streams
into appropriate display

Clients transmit
individually compressed
bitstreams

Zoom calls this
“multimedia routing”

Stanford CS348K, Spring 2025

One drawback of this design
If each client is providing a single compressed video stream, that means each person on the
video call must receive the same bits right? (What if they are on different network connections?)

Stanford CS348K, Spring 2025

Scalable video codec (SVC)
“Scalable” compressed video bitstream: subsets of the bitstream encode valid video streams for a decoder
- Implication: if packets get lost, the remaining packets form a valid H.264 bitstream, albeit at lower

resolution or quality

SVC is an extension of H.264 standard

Example: temporal scalability

Layer 0: (T0) defines valid video at frame rate R
Layer 1 (T1) defines bumps frame rate to 2R
…

Note how layer 0 information is used to predict higher layer information

Stanford CS348K, Spring 2025

Scalable video codec (SVC) SVC is an extension of H.264 standard

Example: spatial scalability

Layer 0: defines valid video at low resolution (and low frame rate)
Layer 1: provides additional information for higher resolution (and higher frame rate) video

Layer 0:
(Low res)

Layer 1:
(Higher res)

Again, note how layer 0 information is used to predict higher layer information
(Higher efficiency than independently encoding two video streams)

Stanford CS348K, Spring 2025

Scalable video codec (SVC) encoder

Costs: higher encoding/decoding costs
(But possible on modern clients as SVC is supported in hardware)

