
Visual Computing Systems
Stanford CS348K, Spring 2025

Lecture 12:

Learned World Models vs.
Simulators Based on Human-Authored Models

Stanford CS348K, Spring 2025

The great CS348K debate
Team World Models Team Traditional Simulator

Stanford CS348K, Spring 2025

The scenario
Your job is to lead a team for the next 10 years to develop the ultimate virtual world
simulator for training AI agents on a immensely wide variety of tasks

Those AI agents might be trained with RL, be LLM-based agents, or use technology that
has not been developed yet

Consider technologies we have talked about in class so far… what technology bets will
you make?

Stanford CS348K, Spring 2025

Things to consider
Consider types of tasks you may want to support
Consider the fidelity of simulation you want to achieve?
- What does “high fidelity” even mean?

Consider various costs
- Costs to create (or acquire via capture) world content
- Costs to execute simulations and training
- Costs to develop the systems or debug agents that you train

Stanford CS348K, Spring 2025

General design strategies for LLM-based agents

Stanford CS348K, Spring 2025

A simple problem solving activity

The answer is 64 GFLOPS (64 giga-floating point operations per second).

Stanford CS348K, Spring 2025

Another problem solving activity

Stanford CS348K, Spring 2025

Fine-tuning vs. in-context learning

✓

<latexit sha1_base64="jeMNMzS8PsU1FWkR24iA8gyofpY=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Ae0oWy2m3btZhN2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRI GSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilVg9HHGm/XHGr7hxklXg5qUCORr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxWNuPGz+bVTcmaVAQljbUshmau/JzIaGTOJAtsZURyZZW8m/ud1Uwyv/UyoJEWu2GJRmEqCMZm9TgZCc4ZyYgllWthbCRtRTRnagEo2BG/55VXSuqh6terlfa1Sv8njKMIJnMI5eHAFdbiDBjSBwSM8wyu8ObHz4rw7H4vWgpPPHMMfOJ8/po+PMA==</latexit>

✓ft

<latexit sha1_base64="2UI8cvO2CoYkqpdxI2Vc6sA2mcU=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0WPRi8cK9gPSUDbbSbt0swm7E6GE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61TZJpDi2eyER3Q2ZACgUtFCihm2pgcSihE47vZn7nCbQRiXrESQpBzIZKRIIztJLfwxEg6+cRTvvVmlt356CrxCtIjRRo9qtfvUHCsxgUcsmM8T03xSBnGgWXMK30MgMp42M2BN9SxWIwQT4/eUrPrDKgUaJtKaRz9fdEzmJjJnFoO2OGI7PszcT/PD/D6CbIhUozBMUXi6JMUkzo7H86EBo4yokljGthb6V8xDTjaFOq2BC85ZdXSfui7l3Wrx4ua43bIo4yOSGn5Jx45Jo0yD1pkhbhJCHP5JW8Oei8OO/Ox6K15BQzx+QPnM8fwjCRkw==</latexit>

Question 1, solution 1
Question 2, solution 2
Question 3, solution 3
Question 4, solution 4
Question 5, solution 5
…
Question 10,000, solution 10,000

Pretrained LM

Fine-tuned LM

Step 2: Test time execution

✓ft

<latexit sha1_base64="2UI8cvO2CoYkqpdxI2Vc6sA2mcU=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0WPRi8cK9gPSUDbbSbt0swm7E6GE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61TZJpDi2eyER3Q2ZACgUtFCihm2pgcSihE47vZn7nCbQRiXrESQpBzIZKRIIztJLfwxEg6+cRTvvVmlt356CrxCtIjRRo9qtfvUHCsxgUcsmM8T03xSBnGgWXMK30MgMp42M2BN9SxWIwQT4/eUrPrDKgUaJtKaRz9fdEzmJjJnFoO2OGI7PszcT/PD/D6CbIhUozBMUXi6JMUkzo7H86EBo4yokljGthb6V8xDTjaFOq2BC85ZdXSfui7l3Wrx4ua43bIo4yOSGn5Jx45Jo0yD1pkhbhJCHP5JW8Oei8OO/Ox6K15BQzx+QPnM8fwjCRkw==</latexit>

Question X Solution X

Test time:

Solution X

Let’s solve a problem:
Here are a few examples:
Question 1, solution 1
Question 2, solution 2
Question 3, solution 3
Now, given new question X, what is the solution?

✓

<latexit sha1_base64="jeMNMzS8PsU1FWkR24iA8gyofpY=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Ae0oWy2m3btZhN2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilVg9HHGm/XHGr7hxklXg5qUCORr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxWNuPGz+bVTcmaVAQljbUshmau/JzIaGTOJAtsZURyZZW8m/ud1Uwyv/UyoJEWu2GJRmEqCMZm9TgZCc4ZyYgllWthbCRtRTRnagEo2BG/55VXSuqh6terlfa1Sv8njKMIJnMI5eHAFdbiDBjSBwSM8wyu8ObHz4rw7H4vWgpPPHMMfOJ8/po+PMA==</latexit>

Step 1: Fine tune existing model on
in-domain training set:

In context learning:Fine-tuning:

Training…

Stanford CS348K, Spring 2025

In-context learning example (failure)

Stanford CS348K, Spring 2025

Chain of thought prompting
Main idea: modify the (in-context) prompted examples so they explicitly break down the solution into steps. By “coaching”
the model to think step by step, the model is able to be more successful in its reasoning.

No fine-tuning step.

Step-by-step “training data” harder to come by,
in-context reasoning needs less of it.

By running in steps, model can expend more
computation to solve problem

More interpretable answer, since chain of
reasoning is revealed.

Empirically: chain of thought needs larger
language models to work.

[Wei et al. 2022]

Stanford CS348K, Spring 2025

Tree of thoughts
Brings together traditional idea of backtracking search and chain-of-thought
Generate answer step-by-step (like chain of thought)
But generate multiple possibilities each step
Choose most promising next step: use LM a judge ** to “score” the possibilities

Chain of thought: Tree of thought:
Judge possibilities:

Given this question, which step do you think is best?

OR

Compute some independent score for each option,
take best.

[Yao et al. 2023]

** The judge is a form of self reflection, see later in talk

Stanford CS348K, Spring 2025

Enhancement: dynamic lookup into “Memory”
Challenge: LMs have finite input context length
Training dataset may have many examples
Idea: choose examples are the “most relevant” examples to provide the LM as context

Question 1, solution 1
Question 2, solution 2
Question 3, solution 3
Question 4, solution 4
Question 5, solution 5
Question 6, solution 6
Question 7, solution 7
Question 8, solution 8
Question 9, solution 9
Question 10, solution 10
Question 11, solution 11
Question 12, solution 12
Question 13, solution 13
Question 14, solution 14
Question 15, solution 15

Let’s solve a problem:
Here are a few examples:
Question 2, solution 2
Question 4, solution 4
Question 12, solution 12
Now, given question X, what is the solution?

Solution X✓

<latexit sha1_base64="jeMNMzS8PsU1FWkR24iA8gyofpY=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Ae0oWy2m3btZhN2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilVg9HHGm/XHGr7hxklXg5qUCORr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxWNuPGz+bVTcmaVAQljbUshmau/JzIaGTOJAtsZURyZZW8m/ud1Uwyv/UyoJEWu2GJRmEqCMZm9TgZCc4ZyYgllWthbCRtRTRnagEo2BG/55VXSuqh6terlfa1Sv8njKMIJnMI5eHAFdbiDBjSBwSM8wyu8ObHz4rw7H4vWgpPPHMMfOJ8/po+PMA==</latexit>

Question XDB query

￭ Typical query solution: embed question string, K-NN lookup in “vector database”

Stanford CS348K, Spring 2025

Use of memory
Lookup most relevant Q-A examples

Examples:
- Robot planning: If the task is making a plan to “cook an egg”, then in-context examples should be as

relevant as possible. i.e, if you have an example plan for “cook a potato” in the DB then use it.

- Social decision making: If the task is deciding what to do next when you see Maneesh, DB lookup might be
retrieve all items in history that record interactions with Maneesh

Stanford CS348K, Spring 2025

Self reflection
If chain-of-thought was about forcing the model to “show your work”, then self reflection is about forcing the
model to “tell me why” you took a particular step

Model outputs two pieces of information:

1. A list of actions (steps in a plan)
- Actions modify “the world” and solicit new observations

2. A list of thoughts
- Thoughts do not modify the world, but update the state of the planner (by forcing it to emit more tokens)

[Yao et al. 2022]

Stanford CS348K, Spring 2025

Self reflection examples
Example 1: Robot acting in virtual environment

(Observations are symbolic representation of world state)
Example 2: digital assistant browsing the web

(Observations are web page contents)

[Yao et al. 2022]

Stanford CS348K, Spring 2025

Another form of reflection
Reinforcement learning formulation (assumes a world simulator exists)
Given world state W and task description T (e.g., “get a glass of milk”), the agent executes a plan in the
simulated world (“rolls out plan”)
This generates a log of: (action_i, observation_i) pairs, and a “reward”
Model model is asked to produce an English-language critique of what went wrong (e.g, what and where in
the log)

Now retry plan generation with: (W, T, log, reward, critique)

We’ll see the same idea in the Voyager paper you’ll read tonight.

[Shin et al. 2023]

Stanford CS348K, Spring 2025

General LLM-agent architecture

[Image credit: Lilian Weng]

Stanford CS348K, Spring 2025

Recall from prior lecture: plans as valid programs
Example: ProgPrompt [Sing et al. ICRA 23]

Key ideas:

LM as a code generator: a plan is a valid python
program with access to subroutines (action space
defined by subroutines)

World state is given by a list of available objects

Through conditional logic, plans can have grounded
recovery policies:

￭ If condition is not true, do X

“Microwave salmon”:

Stanford CS348K, Spring 2025

Voyager
Task: do things in Minecraft: make new things, fight Zombies, etc.
Big ideas:
￭ Use LM to generate plans as programs
￭ Use LM to repair bad programs: (reflection)

- Run programs to see if they work.
- Get compiler feedback and game state feedback
- Use LM to repair program given feedback

￭ Use LM to propose new tasks (AI makes the curriculum)

￭ Key idea: hierarchical skill library: new tasks get asked to skill library for use as future subroutines
- As agent develops: increasing granularity and sophistication of the actions in the agent’s action space

